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Abstract Alternative information-theoretic (IT) measures of the chemical bond
multiplicity and its covalent/ionic composition in the orbital communication theory
(OCT) are examined using Shull’s natural orbital (NO) model of the homopolar bond
in Hy. In OCT a molecule is treated as an information (probability-scattering) system,
generated by the network of conditional probabilities (from the quantum mechanical
superposition principle) linking elementary events of the adopted perspective. For the
first time this atomic orbital (AO) invariant, two-NO description of Shull allows one to
examine in several alternative representations the behavior of the previously adopted
IT indices, of the channel average communication noise (OCT-covalency) and infor-
mation flow (OCT-ionicity), with changing internuclear distance R, from the united
atom (R = 0) to the separated atoms limit (SAL) (R — o0). The adopted references
include the two-electron atomic and ionic functions of the model, as well as the alter-
native one-electron functions, of the AO and NO sets, respectively. The numerical
results for the Wang function description of H, are reported and a general agreement
with the accepted chemical intuition is tested. Joint probabilities of Shull’s reference
states are linked to the energy partitioning. The incorrect SAL behavior of the OCT-
ionicity index, giving rise to the constant (interaction independent) overall multiplicity
measure, emphasizes a need for a revision of these IT bond descriptors. The modified
set of indices is proposed, reflecting the complementary localization (determinicity)
and delocalization (indeterminicity) aspects of the communication system in question.

Here A, A, and A respectively denote the scalar quantity, row vector and a square/rectangular matrix.

The logarithm of the information measure is taken to an arbitrary but fixed base: log = logy corresponds to
information measured in bits (binary digits), while log = In expresses the amount of information in nats
(natural units): 1 nat = 1.44 bits.
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The novel IT-ionicity now reflects the diagonal (intra-orbital, additive) information
propagation in the molecular channel, while the modified IT-covalency accordingly
measures the effect of its off-diagonal (inter-orbital, nonadditive) probability scatter-
ings. These components are shown to give rise to the interaction strength dependent
overall IT bond-order, which adequately reflects the chemical intuition.

Keywords Bond ionic/covalent components - Bond multiplicity/order -

Chemical bond descriptors - Energy partitioning - Information theory -

Molecular communication systems - Natural orbitals - Orbital communication theory -
Shull model of Hy

1 Introduction

For a chemical understanding of the bonding patterns in molecules such intuitive
chemical concepts as atoms-in-molecules (AIM) or multiplicities (orders) of the
chemical bonds and their atomic/covalent and ionic components are paramount,
e.g. [1-4]. In general, the semantics of these traditional chemical descriptors is
not sharply defined in modern quantum mechanics so that they can be ultimately
classified as Kantian noumenons of chemistry, e.g., [5]. It has been demonstrated
elsewhere that the Information Theory (IT) [6-13] can be successfully used to elu-
cidate their more precise meaning in terms of the entropy/information quantities
[1-4,14-23]. In this IT perspective on the molecular electronic structure the molecular
states, their associated electron distributions and probability currents carry the com-
plete information about the system bonding patterns. Indeed, some of these chem-
ical characteristics are “entropic” in character, being primarily designed to reflect
the spin “pairing” patterns between electrons, rather than the molecular energetics
itself.

For example, the displacements in the molecular information distribution, rela-
tive to the promolecular reference consisting of the nonbonded constituent atoms in
the molecular positions, have been investigated and the least-biased partition of the
molecular electron distributions into subsystem contributions, e.g., densities of AIM
have been investigated. This IT approach to the AIM partition of the molecular elec-
tron density has been shown to lead to the “stockholder” fragments of Hirshfeld [24].
Information theory also facilitates a deeper insight into the nature of bonded atoms
[1-3,14-23], the electron fluctuations between AIM [25], and a thermodynamic-like
description of molecules [25-27]. It also increases our understanding of the elemen-
tary reaction mechanisms [28]. Moreover, by using the complementary Shannon and
Fisher measures of the information content of the electronic distribution, in both the
position and momentum spaces, it has been demonstrated that these IT probes allow
one to precisely locate the substrate bond-breaking and the product bond-forming
stages along the reaction coordinate, which are not seen on the reaction energy profile
alone [29,30].

These applications have amply demonstrated that IT concepts and techniques
constitute attractive are efficient tools for exploring and understanding the elec-
tronic structure of molecules. They facilitate the spatial localization of the
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system electrons and chemical bonds, an extraction of the entropic bond-orders
and their covalent/ionic composition, and a monitoring of the promotion (polariza-
tion/hybridization) and charge-transfer processes, which determine the valence state
of bonded atoms. For example, the nonadditive Fisher information in the Aromic
Orbital (AO) resolution has recently been used as the Contra-Gradience (CG) crite-
rion for localizing the bonding regions in molecules [1-3,31-35], while the related
information density in the Molecular Orbital (MO) resolution has been shown
[1-3,36] to determine the vital ingredient of the Electron-Localization Function (ELF)
[37-40].

The Communication Theory of the Chemical Bond (CTCB) has been developed
using the basic entropy/information descriptors of the molecular information (com-
munication) channels at various levels of resolving the molecular probability distribu-
tions [1-4,41-51]. The entropic probes of the molecular bond structure have provided
tools for describing the chemical bond phenomenon in information terms and for an
exploration of the information origins of chemical bonds [2]. The Orbital Communi-
cation Theory (OCT) [2,3,52-58] uses the electronic conditional probabilities in AO
resolution, generated using the bond-projected superposition principle of quantum
mechanics, to define the molecular information (communication) system. Its aver-
age entropy/information measures of the bond covalency/iconicity reflect the average
communication “noise” and the flow of information, respectively, in such a molecular
network [1-4,52-58].

In OCT the chemical bonding is synonymous with some degree of a communication
between AO in the underlying information channel. Since this one-electron commu-
nication channel depends on the choice of basis set of SCF MO calculations, which
determine its elementary events, the minimum basis set of the promolecule-occupied
AO or its Maximum-Overlap fit have been recommended for chemical interpretations
[57]. On one hand, this probability propagation can be realized directly, through the
constructive interference of interacting orbitals, i.e., as a “dialogue” between the given
pair of orbitals. On the other hand, it can be also effected in an indirect manner, through
the cascade of other orbitals. The latter mechanism can be compared to the “gossip”
spread through the orbital intermediates (AO “bridge”). These two mechanisms gen-
erate the associated through-space and through-bridge contributions to the overall
multiplicities (orders) of the system chemical bonds [S8-65].

It has been recently suggested [64] that the electron correlation can be included in
this OCT approach by using the Natural Orbital (NO) famework of the Configuration
Interaction (CI) theory. This desired extension of the IT treatment would introduce
some degree of “universality” (invariance) into the associated patterns of the orbi-
tal shapes and occupations (probabilities) for wave functions obtained in a widely
different basis sets and CI expansions. The NO description emphasizes the Hartree—
Fock (HF) like MO (strongly-occupied NO) and it determines the main modes for
the Coulomb correlation between electrons (weakly-occupied NO). It also offers a
universal framework for understanding the nature of the chemical bond. It is the main
purpose of this work to examine diverse entropy/information descriptors of a realistic
model of the diatomic (two-electron) chemical bond in the two-NO description of
Shull et al. [66—72]. Atomic units and bits are used throughout.
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2 Model summary

The ground state W(1, 2) of two electrons can be resolved into the singlet (antisym-
metric) spin factor ® (o1, 02) = 271210 (1) B (2) — B (1) & (2)], where « (spin-up)
and B (spin-down) functions stand for two admissible spin states of an electron, and the
spatial (symmetric) function ® (ry,r;) : ¥ (1,2) = ® (r1,r2) ©(o1, 02). The Shull
model uses the two-term (orthonormal) NO expansion of the spatial factor,

Q(ri,r2) = C1y1 (r) Y1 (r2) + Coa (r) Y2 (r2) = @ (1, 2), ey

with the expansion coefficients {C} related to the corresponding NO probabilities
(occupation numbers) {n; = C,% orCy ==xn ,i/ 2} satisfying the relevant normaliza-
tionrequirement: n1+4n2 = 1. It was shown to contain essentially all of the information
associated with a diatomic chemical bond that can be applied without reference to any
particular basis set, including the rigorous concepts of the fractional atomic and ionic
character, which complement the “covalent” and “ionic” components introduced by
Pauling [73] on intuitive grounds.

For interpretative purposes the Shull model introduces several reference states
of two electrons, expressed in terms of arbitrary, normalized space orbitals u
and v contributed by the two atoms. The model introduces the “atomic” function,
DPp(1,2) = Npyfu(DHv@)+v()u(2)}, and two “ionic” states: GD?' (1,2) =
Ni{u(Du@)+vDv2)} and & (1,2) = Ny{u(DHu () — v (D v (2)}, with
their normalization constants expressed in terms of the overlap integral S, , =
(ulv)y: N» = [2(1 £ S,w)]’l/ 2 Indeed, in accordance with the familiar nomenclature
of the Valence Bond (VB) theory [74], ® s describes the atomic distribution of the two
electrons, among two different atoms in the system promolecule, while @Ii mark the
associated ionic distributions, with the two electrons being assigned to the same atom.

One further observes that the two independent basis functions can be uniquely
expressed in terms of the two (basis-set invariant) NO:

u = Y1cosg + Yosing and v = yYysind — Ypcoss, 2)

and hence S, , = sin(6 — ¢). For¢ = § = /4 these relations define the orthogonal
transformations:

U= 2_1/2(1//] + 1) and v = 2_1/2(1/f1 — ), or

U1 =2""2w+v) and yo =212 —v). 3)

Therefore the reference states can be explicitly expressed in terms of NO:

Da (1,2) =272y (D) 1 (2) — ¥2(1) ¥2(2)},  symmetric;
@ (1,2) =272y () Y1 (2) + Y2 (1) Y2 (2)},  symmetric; 4)
O (1,2) =272 {y1 () ¥2(2) + ¥2(1) Y1 ()}, antisymmetric.
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The symmetry descriptions above refer to the homopolar inversion operation, resulting
in the u <> v interchange. These components are mutually orthogonal, thus assuring
independence of concepts derived in this framework.

To summarize, a general state of two electrons, covering both the homopolar and
heteropolar bonds, can be expressed as a combination of these chemically meaningful
references,

®(1,2) = Aa®a(l,2) + A DF(1,2) + A7 D7 (1,2) = S di(1,2),  (5)

where for the (homopolar) Hy case, which we shall consider in this work, A; = 0:
O (Hy) = Ao Da + )\I+ @f” . Hence, by the normalization of conditional probabilities
{P(9|®)} of observing the reference states ¥ = (A, I+) in the molecular state @,
generated using the superposition principle of quantum mechanics [75],

P(A|®) + PIT|®) = (ha)? + () = 1. (©)

This allows the interpretation P(A|®) and P (I*|®) as the bond fractional atomic and
ionic characters, respectively [66—72]. We emphasize, that these concepts have been
developed without a reference to any particular basis set, with the orthogonal reference
functions being closely identified with the accepted chemical intuition.

Consider the specific molecular state of Hp described by the Wang function,

dV(1,2) = N [1s,(1) 1sp(2) + 1sp(1) 15,(2)] = @8 (1,2), (7

cov

representing the symmetrized VB product of two 1s AO contributed by atoms a and
b, with the molecularly optimized exponents. A gradual decrease of the bond ionicity
and the corresponding increase in its atomic character is observed as the interactomic
distance R increases [72] (see also Table 1). For the equilibrium internuclear distance
R = 1.40 this framework implies a substantial bond ionicity P (I*|®):

P(A|®) = 0.68 and P(IT|®)=0.32. ®)

Hence, the Shull model predicts 68 % atomic character and 32 % ionic character of
this equilibrium homopolar bond.

This (orthogonal) NO perspective differs substantially from the familiar (nonor-
thogonal) VB approach of Heitler and London [74]. The latter uses the separated atom
s exponent in a combination of the covalent VB structure of Eq. (7) and the ionic VB
function @ (1,2) = ®Y¥B(1, 2) of Eq. (5), for which Pauling [73] predicts 5% bond
ionicity. These VB structures are known to be strongly nonorthogonal, <<I>i\(/)]3 | @2@%) =
0.96, so that the truly independent ionic correction to ®YE is determined by the
Schmidt-orthogonalized component of @i\g}g, Yion = 3.362@;{}3 — 3.42843223 [76].
In the optimum ground-state wave function for the equilibrium separation between
nuclei, ® = 0.998®YB +0.058W;,,, one thus predicts from the quantum superposition

cov
principle

@ Springer



12 J Math Chem (2013) 51:7-20

Table 1 Fractional atomic and ionic characters (conditional probabilities of reference states) of the Wang
function for Hy in the Shull 2-NO description [64] (columns 2, 3), the joint probability of two reference
states (column 4) and the overall (column 5) and resonance (column 6) conditional entropies of the the com-
munication system of Fig. 1. In columns 7 and 8 the diagonal probability X of the corresponding AO channel
(Fig. 3a) and the associated entropy covalency H (X) are reported. The last two columns report modified
additive (column 9) and nonadditive (column 10) contributions to the overall bond index of column 8

R P(A|®) PIT|®) P(AATTI®) SBIA)e SATHe X H(X) Mion(X) Mcov(X)
1 2 3 4 5 6 7 8 9 10
0.000 0.536  0.464 0.249 0.996 0.499 0.501 1.000 0.499 0.501
0.734 0.576  0.424 0.244 0.983 0.497 0.506 1.000 0.497 0.503
1.404* 0.679  0.321 0.218 0.905 0.479 0.534 0.997 0.483 0.514
1.798 0.744  0.256 0.190 0.821 0.455 0.568 0.987 0.464 0.523
2992 0.892  0.108 0.097 0.494 0.326 0.721 0.854 0.340 0.514
4.027 0.965 0.035 0.033 0.219 0.162 0.882 0.523 0.160 0.363
5.050 0.991  0.009 0.009 0.074 0.002 0.965 0.220 0.050 0.170
10.02 1.000  0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

4 Equilibrium distance

P(@YB|®) =0.997 and P(Wjp,|P) = 0.003, )

cov

and hence roughly purely-covalent character of the chemical bond in Hj.

Additional insight into the model predictions comes from energetic considerations
[72], by examining the expectation value of the system electronic Hamiltonian H(1, 2)
in the ground state ®(Hj):

(E)e = (DH|®) = (1a)* (Pa[H|DA) + 1) (@ HID]) + 2442 (Pa[H| D)
= P(A|®)Ha A + PIT|®)Hy,1 +20a0 Ha 1. (10)

These three energy terms give the following contributions to the system total energy
(E)¢ = —1.139; P(A|®)Ha A = —0.380, P(I+|d>)HA,1 = —0.071, and cross term
ZAA)»?' Ha1 = —0.687. Both diagonal matrix elements Ha _a and Hy indicate that
the reference states @5 and CI>I+ are neither strongly bonding nor strongly antibonding.
It is the cross-term, which is seen to represent the largest (60 %) contribution to the
system electronic energy.

3 Two-electron communication system

Each selection of the (orthogonal) molecular reference states {Wy}, in terms of which
the system wave function W is expanded,

V=W, (W) =8 Co= (W), Si|Cil* = S P(W W) = 1,
(11)

determines the associated set of the conditional probabilities {P(l|k)y =
Py — V)y} = P(BJA), of detecting in the molecular ground state W the
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Inputs: A P(B|A) Outputs: B
P(A|D)——D P(A|®) s — P(A|D)
\P(1+|<1>)

/P(A|<I>)

P(I'|d) ——> D] P(I'|®) @ — P(I'|d)

Fig. 1 The ground-state channel for H; in the Shull model

reference state \V;, when the system was known to be initially in state ;. Such
molecular “events” define the input (source) (A = {W;} = {k}) and output (receiver)
(B = {Y;} = {I}) of the relevant two-electron communication channel.

We have identified above the reference-state probability in the molecular ground
state, P (W |W) = P(k|W¥), as the square of the modulus of the corresponding expan-
sion coefficient, P (k|¥) = |Ck|?, in accordance with the superposition principle of
quantum mechanics [75].

The probability propagation in this information network are also generated using
the ground-state-projected superposition principle [52,75]. It defines the associated
Jjoint probabilities of the two reference events in the specified molecular state:

PA ABIW)={P(k ALIW)=P(I AKk|¥)=|[(W W) (WIW) 2= P (k| W) P (1| W)}
(12)

These product joint probabilities indicate that the channel input events are independent
of its output events. They are seen to conform to the required normalizations:

SkPA AN = PANY), PAAKIY) = P(k|W), TS P(AKW) = 1.
(13)

Hence, the representative conditional probability in state W, of observing W, given the
state Wy, reads:

Plk)y = P(Wx — W)y = PUANKIW)/P(k|W) = P(IV), X Pk = 1.
(14)

For example, in the homopolar case of H, the two reference states (P a, CDfr) used
to express the wave function @ define the (2 x 2) molecular information system of
Fig. 1, defined by the conditional probabilities of Eq. (6):

P(AlA)e = P(A[TY) e = P(A|D) = (ha),
PIT|A)p = PAT|IM)e = PAT|®) = 0% 15)
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Inputs: A P(B|A) Outputs: B
| ——®, P(A|®) ®p — P(A|D)
\P(I+|<1>)
@ — P(I'|®)

Fig. 2 The promolecular (row) channel for the Shull model of Hy

Since in this channel the input signal { P (k|®)} = P(A|®) = p is equal to the output
signal

{P(|P)} = P(B|®) = g = pP(B|A), (16)

this molecular communication network is stationary. In CTCB such purely molecular
scattering is used to extract the overall IT-covalency descriptor, the conditional entropy
of outputs A given inputs B in the molecular ground state @,

SB|A)p = =Sk Z P (k A1 D)ogP (k) o
—P(A|®)logP(A|®) — PIT|D)logP (IT|d)

= S(p) = H(A) = S(q) = H(B), (17)

which reflects the channel average communication “noise”. Above, S(P) denotes the
Shannon entropy in a discrete probability distribution P = (Pa, PI+) :

S(P) = —PalogPa — P/TlogP;". (18)

The molecular iconicity index in CTCB reflects deviations relative to the Sepa-
rated-Atom Limit (SAL), at R — 00, which corresponds to P(A|oo) = 1 = Pa(0c0)
and P(IT|o0) = 0 = PI+ (c0) (see Table 1). Therefore, in calculating the channel
mutual information in the promolecular inputs and molecular outputs, respectively,
the information-flow descriptor of the bond IT iconicity, one has to probe the chan-
nel with this promolecular input signal, P(A%) = (1,0), which explores only the
row-channel originating from ® 4 shown in Fig. 2 [see Eq. (14)],

IB|AY) e = =Xk i P(k Al|®) log[P(U|k)o/P(I|®)] = 0. (19)

Therefore, this information iconicity, providing the IT descriptor of the difference
aspect of the chemical bond relative to SAL, vanishes in this particular resolution
level, indicating that the whole initial information in the molecular signal H(A) is
dissipated as noise, so that there is no net flow of information in this model molecular
channel. This confirms the independence of the input and output events in the molecu-
lar channel of Fig. 1, as indeed inferred from the product form of the underlying joint
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probabilities [Eq. (12)]. Hence the resultant IT bond index is entirely reflected by the
Shannon entropy of the input/output probability distribution of Eq. (17):

N B)o = S(B|A)o + I(A” : B)o = S(B|A)o = H(A) = H(B).  (20)

We thus conclude that, relative to SAL, this communication description of the model
chemical bond in Hj predicts its purely covalent character. After all, this is indeed
what chemists intuitively associate with this prototype homopolar chemical bond.

It should be also observed that the energy contributions of Eq. (10) reflect specific
channel communications. In particular, the diagonal energy terms, P(A|®)Ha Ao =
P(A|A)g Ha a and P(IT|®)Hyy = P(IT|I1)¢ Hy 1, can be associated with the prob-
ability amplitudes of the corresponding joint probabilities,

[PAAA)]Y? = PAI®) and [PATATN) ] = PAT|®),  (21)

behind the &5 — P4 and @i" — <I>I+ information propagations, respectively. The
cross-energy term,

[P(A|®)P(IT|®)]V? (Ha 1 + Hia), (22)

can be similarly related to the cross scatterings ®5 — @f and CI>I+ — 4. Indeed,
one observes that its probability factor

[P(A|®)P(IT|®)]'2 = [P(AATN)0]'2 = [PAT A A)e]'/2, (23)

also reflects the off-diagonal probability amplitudes in the molecular ground state ®,
of the corresponding simultaneous events involving two different reference states.
To summarize, the joint probabilities of the reference states supplemented with the
relevant matrix elements of the system Hamiltonian provide a transparent energy-
partitioning perspective associated with specific communications in the molecular
information system.

Of interest also is the infer-state conditional entropy measuring contributions due
to the cross-state probability propagations, between different reference states,

S(A.T7), = —P(AATT|®)[logP(A|®) + logP(I"|®D)]

= —PAATT|®)logP(AATT|D)
= —P(A|®)P(IT|®)log[ P(A|D)PIT|D)]. (24)

This noise index reflects the resonance between atomic and ionic states, which lies
behind the fluctuational (Charge-Shift) mechanism [77] of chemical interactions.
Table 1 summarizes variations of the state probabilities (columns 2—4) and entropies
(columns 5 and 6) in H, with increasing internuclear distance R (column 1). These IT
covalency descriptors have been obtained using the probability data [72] for the Wang
function [Eq. (7)]. Both the overall conditional entropy S(B|A)¢ and its cross-state
(resonance) contribution (A, I+) o are seen to gradually decrease as R increases. In
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(a) Inputs: A P(BJA) Outputs: B
%) u X u—Y X=[1+QAA)T
1-X S(B|A), = —XlogX — (1-X)log(1-X) = H(X)
I(BJA"), = 1 - H(X)
1-X
Vs v X v NA%B), =1
(b) Inputs:A P(B|A) Outputs: B
%) Vi 1 vi— %
S(BJA), =0
I(BA%), =1
Vs W 1 w— NA%B), =1

Fig. 3 The ground-state orbital channels, AO (a) and NO (b) in the Shull model for H, (Wang function)
and their OCT bond indices

the range R € [0, 1.8] the overall bond order stays above 0.8 bits, marking a strong
single covalent bond, and it fast decays for larger distances. At the equilibrium distance
the overall entropic bond multiplicity of 0.90 bits is seen to combine the resonance
entropy of 0.48 bits and the remaining diagonal contributions due to the intra-state
probability scatterings.

4 Orbital channels

Let us now consider the communication systems determined by the two sets of one-
electron functions: NO, ¥ = (Y1, ¥2) = {¥}, and (orthogonal) AO, x = (u,v) =
{xi},for ¢ = 8§ = m/4. The 2-NO expansion of Egs. (1) and (5) generates the
following Charge and Bond Order (CBO), 1-density matrix in these two orbital rep-
resentations:

YNO — (N (Y [W) (W) = (el |¥1) (W] + malv) (al} )} = {ndea )
ni=(a+Ar0H%n = (a — A%
YAO = (N (x| W) (W[x;) = (xil{nilvn) (Wil + malv) (Walblvn)} = () @)

_[1 2xah
T 2aan 1 '

They determine the corresponding orbital communication channels, shown in Fig. 3,
determined by the AO/NO conditional probabilities {P (x| xi)o = P(jli)o = P A
J1®)/P(i|®)} and {P(Yi|Yk)e = P(lk)e = P(k Al|®)/P(k|P)}, respectively.
Let us first examine the entropic bond covalency of the AO channel, listed in col-
umn & of Table 1. As expected, for the equilibrium bond length it recovers the bond
composition predicted in Eq. (9). These equilibrium bond indices agree qualitatively
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with bond components of the rwo-electron channel of Fig. 1, but the AO channel addi-
tionally uncovers the competition between these OCT measures of the bond covalency
and iconicity, for the conserved overall bond index N (AO; B =1.

For the first time, however, these numerical results allow one to examine the behav-
ior of such IT multiplicities with iternuclear distance, from the united (He) atom at
R = 0 to the SAL at R — o0o. One observes that at shorter distances, including the
equilibrium bond length, the two AO strongly mix to form NO, X(R) ~ 1/2, and hence
practically all input information is dissipated as noise at the channel output. At large
distances this constructive AO interference in the bonding NO gradually disappears,
X(c0) = 1, so that AO communications become perfectly deterministic (localized) in
character thus preserving in the system output the whole input information.

Therefore, this IT interpretation correctly reflects the average noise and informa-
tion flow components of the AO information systems. The intraatomic character of AO
communications in SAL is thus synonymous with the purely atomic character of the
molecular state in this limit, in perfect agreement with Shull’s definition of this dis-
sociation state. However, in OCT H[X (o0)] = H(1) = 0 and hence I[X (c0)] = 1,
contrary to prevailing chemical intuition, which was well reflected by Shull’s NO
indexing: [)LfF (00)]?> = 0. This difficulty has been resolved previously by regarding
the SAL as a collection of the separate atomic channels, each with the vanishing
(intraatomic) iconicity [1].

For the fixed internuclear distance R of the heteronuclear system the binary entropy
H(X) can be alternatively regarded as function of the complementary atomic prob-
abilities, P = Pu|y1) = [(u|y1)] or @ = Plyn) = 1 = P = [Qly1)*: eg.,
H[X(P)] = H(P). These probability variables reflect relevant conditional proba-
bilities of AO in the bonding NO v, and reflect the bond polarization. It has been
demonstrated elsewhere that the entropy function H(P) is well represented by the cor-
responding Wiberg [78] bond-order of the 2-AO model, M,, , = (y,,,v)2 , given by the
parabola M), , (P) = 4PQ. The corresponding OCT covalency/ionicity indices of the
2-A0 model then correctly describe the P-variations in the bond composition, includ-
ing the partially polarized bonds and the limiting ion-pair electron configurations,
when both electrons are located on a single AO, e.g., [1-4,56].

Therefore, in an attempt to bring the limiting (SAL) value of the communication
bond indices to a qualitative agreement with intuitive expectations, one could alterna-
tively regard the overall AO noise index S(B|A)gp = H(X) as a measure of the fotal
entropic bond order:

Mu,v = Sintra + Sinter = S(B|A)<I>' (26)

This overall measure is explicitly interaction-sensitive, thus correctly reflecting its R-
dependence and the vanishing value in the SAL. It can be subsequently partitioned into
contributions due to the diagonal (intra-orbital) and off-diagonal (inter-atomic) com-
munications between AO. The former focuses on the information transferred inside
both AO, reflecting the channel deterministic (electron localization) component, which
in OCT is linked to the bond ionicity feature. The latter characterizes the AO “res-
onance”, i.e., the infer-atomic probability scatterings, due to electron delocalization,
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which is regarded by chemist as the essence of the bond covalency, i.e., the electron
sharing between the two atoms.

To summarize, this modified IT indexing system in OCT uses the “additive” (AO
localization) noise component,

Mion(X) = Siptra(X) = =%, P(I A l|<D)10gP(l|l)q>
= —Pu A u|®)logP(ulu)e — P(v A v|@)logP (v|v)e = —XlogX,
(27)

as a mesure of the ionic bond order, and the cross-state, “nonadditive” (AO scattering)
noise term,

Moy (X) = Sinter (X) = _Ei#jp(i A jl®)ogP (jli)e
—P(u A v|®P)[logP (u|v)e + logP (viu)e] = —(1 — X) log(1—X)
= H(X) - Mion(X)a (28)

as a descriptor of the bond covalency.

The numerical values of these modified bond components in OCT are listed in
the last two columns of the table. In many respects these new descriptors adequately
reflect the accepted chemical intuition, in accord with the (basis set invariant) Shull’s
description. The main virtue of this novel indexing of I'T bond orders is that for the cur-
rent distance R between both atoms the new overall measure S(B|A)e = H[X (R)]
now reflects the strength of the AO coupling X(R) in NO, thus correctly vanishing
in the SAL,; this is contrary to the constant overall IT bond order N(AO;B)cp =1
bit in Fig. 3, intended for the fixed (equilibrium) geometry indexing, irrespective of
the actual internuclear distance R. The new measure of the bond ionic character now
monotonically decays with increasing R, although more slowly that that observed in
the partial ionic character of the Shull model. For R < 1.8 a.u. these new bond com-
ponents roughly predict M;,, (X) ~ M., (X) ~ 1/2, when orbitals strongly interact
chemically, and then they gradually diminish to zero as the bond elongation continues.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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